Thoughts on the Engineering Industry

A blog covering engineering, technology and business topics

Archive for the category “Infrastructure”

The state of infrastructure funding and the crisis in Flint, Michigan

Hello everyone, I know I’ve been away for awhile.  The truth is that I have trouble staying motivated with my blogpost, but hopefully this will be the start of a more productive year though.  As many of you know, there has been an infrastructure crisis going on in Flint, Michigan that is very serious and was very preventable.  There has been plenty of coverage on the crisis and the root causes of the whole situation there, but I wanted discuss a couple themes that are indicative of our problematic infrastructure policy in the U.S.

The initial fact that jumped out at me in the coverage is that engineers knew that this crisis would occur when the city of Flint, Michigan went through with its proposed plan.  It is one thing to go with a more budget appropriate option to resolve an engineering issue within a city.  Most engineers believe that it is better to have a higher quality engineering system in most cases.  We also realize that it isn’t always within the budget to do so. However, that does not mean that we reduce the quality of the engineering systems such that public lives are at risk.  To do so is to not only break our engineering code of ethics, but to also commit a criminal act and should at least warrant a loss of your professional engineering license.  In my opinion, the professionals involved with this project should have taken any and all actions to prevent the city from going through with these plans.

Furthermore, the fact that the city pushed for this unsafe plan, let alone considered it, is irresponsible of the city government.  In the least, the safety of all it’s residents should be the local, state, and federal government’s main concern.  That’s why we have police officers, fire fighters, social workers, etc.; because the government is an organization that is run for and by the people.  By placing the budgetary concerns before the safety of the residents of Flint, Michigan, the local government broke that implicit agreement and has failed as a government agency.

Additionally, the fact that they felt this pressure at all is indicative of a problematic policy in regards infrastructure spending as a whole.  In my opinion, there a some areas of responsibility that the government should not have strict budgetary constraint.  Most of them have to do with public/citizen health and safety.  Some of those organizations are obvious to identify such as police officers and fire fighters.  There are also some areas that indirectly affect public safety.  In my opinion, one of those areas is infrastructure, and we are failing on multiple counts.  There are bridges that are structurally deficient – a few that have collapsed endangering the public.  There was Hurricane Katrina where the failure of critical flood prevention infrastructure due lack of maintenance contributed to a massive loss of life in the days following the natural disaster.  The crisis in Flint, Michigan is another bullet point on a list failures that have recently occurred in regards to infrastructure maintenance and funding.

Moving forward from the Flint, Michigan crisis, I believe there needs to be a focus on improving infrastructure management on all government levels.  The situation in regards to the infrastructure management in the U.S. has gotten to the point that the safety of the public is increasingly at risk and it is unacceptable that this should be the case.

What are your opinions on the Flynt, Michigan crisis moving forward?  What steps should be taken to improve the situation overall?   If you enjoyed my post, hit the like button, follow my blog for updates and share this post with your friends.  Thanks for reading and have a good week!

Incorporating Engineering into Government to Improve National Programs

Hello everyone, I hope y’all have been doing well.  Today I would like discuss ways to improve our country by involving engineers and engineering concepts in the management of our national systems.  I have narrowed it down what I believe to be the 5 basic ideas.  As a reference, I have used data and assertions made by Evan Twarog in an article describing the role technocracy in China.

1) Become more technocratic in regards to politics

Data shows that the government is mostly run by engineers in China and in the government in the US is mostly run by lawyers.  In addition, Chinese people believe that knowledgeable elite should run the government which led to a technocracy being a part of the political system.  Based on the way government seems to operate in the US, I could see a shift towards the concept technocracy being beneficial for the U.S. as well.  Especially considering some of the issues that confront us, such the deterioration of the infrastructure, climate change, drought in various areas through out the country, and the production of energy in regards oil, wind, solar, etc.  A technocracy provides the critical knowledge and skill sets to properly deal with these issues.

2) Any problem can be solved with an engineering mindset

Engineers have a unique skill set that allows them to solve problems through a standard process.  On a personal level, I apply this mindset to difficult decisions in my life.  I bet you a lot of engineers say the same thing.  I don’t know about them but it works well for me.  And when considering the successes and failures of both China and the U.S., a correlation between the application of technology and the engineering mindset can be observed.  A good example of that in the U.S. is the space program and national arms race in general.  It is this correlation that leads to believe that the engineering problem solving mindset would be a good framework to apply to struggling government processes and programs.

3) An education in a technological field is more respected by society

For years, the culture in China has valued being technologically informed.  This means that changes in the direction of the country are more easily understood and communicated to the masses.  This is not to say there aren’t people capable of doing that here in the U.S., but there still seems to be a large portion of the political system that caters to the lowest common denominator instead of embracing the intelligence of the U.S. population.

4) Some projects need support from the government to succeed

A lot of the great engineering accomplishments require a large amount resources to back them up.  There are very few people and companies that can fully implement these systems.  This means that if there is some technology or engineering program that would improve our country and it is sufficiently large enough that it would be difficult for private organizations, government should not be afraid to step in and help.  If applied with an engineering problem solving mindset and backed by an informed public, these projects should benefit the country overall.

5) Export your technology for economic profit

This is where the practicality of investing money in solving these problems is realized.  In a perfect world, providing infrastructure and services to improve the lives of people is enough.  But government cannot be expected keeping doing so if it cannot be maintained as far as resources are concerned.  This means that sharing the technology nets the government money which can be used to further improve in other areas.  Business concepts like public-private partnerships were designed to improve profits and gains for the country through the development of these infrastructure and service ideas.  If we can keep this end goal in mind, it can ensure that all government systems improve the country socially and economically.

What is your opinion on these 5 concepts?  Is there anything you would add or take away and why?  If you enjoyed reading the blog post, be sure to like the post and share it with your friends.  Thanks for your time and have a good week!

Source

“The Three Gorges Dam, Why China is Run by Engineers”, Twarog, Evan, Atomic Insights, April 13, 2015, http://goo.gl/sZf3Zn

Applications of Shape Memory Alloys in Concrete Infrastructure Rehabilation

Hello, I hope everyone is doing well.  I’ve been busy with the holidays but I’m finally going to get back to my blogging and will hopefully maintain my weekly posting schedule this time around.  Today, I would like to talk about some research on applications of shape memory alloy (SMA) in concrete infrastructure rehabilitation being done at University of Houston and Qatar University.

SMA’s are metal alloys that can be deformed and then return back to their original shape when re-heated.  In this case, researchers are testing the usage of SMA’s in a rod that would be wrapped around concrete beams or columns.  Their ability to deform, then return to their original shape, would apply an active confinement pressure.  The design/usage of SMA’s would perform the function of current fiber-reinforced polymers (FRP’s); however, FRP’s only apply a reactive confinement pressure.  The confinement pressure provided by the SMA’s would, in theory, further reduce long-term deterioration and degradation.

The researchers will focus on determining the best available material for concrete columns and beams.  There are three types of metal alloys being tested.  The alloys that are most commonly available are the nickel/titanium alloys, referred to as binary alloys.  Ternary alloys include a third metal in addition to the binary alloy metals.  A third option are the iron- and copper-based alloys, which are generally less expensive.  Since binary alloys require constant heating to have continuous active confinement pressure, the scientist are focusing their studies on a Ternary alloy using Niobium and Iron/Copper alloys.

I believe the application of SMA’s in this application could improve infrastructure rehabilitation.  However, there are some concerns I have.  I think we need to see definitive proof with testing that, by adding the active confinement pressure, we effectively improve the serviceablity life of the infrastructure. The other concern is that we don’t know how much the rods will expand due to creep – especially since the rods will be continuously loaded with an outward force and have already been deformed to a previously outward deformed shape.

What is your opinion on this application for shape memory alloys?  Do you think it will be effective and practical for concrete infrastructure rehabilitation?  If you enjoyed reading, like the post and share it with your friends.  Thanks for your time and have a good week!

Source 

“Shape Memory Alloys Could Bring Stabilizing Force To Concrete Infrastructure”, David Hill, Civil Engineering Magazine, June 2014

Image Source

“Shape Memory and Palladium Iron Alloys”, taboodada.wordpress.com/2011/03/31/41/, March 31, 2011

Tax incentives for promoting renewable energy production

Hello everyone, I hope your week is going well.  Today I would like to look at a topic that is less technical and a more political – how to implement tax incentives that promote sustainable energy production.  I believe that this is a topic that gets over-politicized and some information needs to be shared in an objective way.

Currently, there are a lot of subsidies provided to oil companies.  According to Oil Change International, the subsidies range from $10 to $52 million annually in the US.  Internationally, the subsidies are somewhere between $775 billion and $1 trillion.  As of July 2014, Oil Change International estimates this years subsidies to be about $35 billion.  $2.4 billion of those subsidies go to the big 5 oil companies in the form of federal tax deductions: BP, Exxon, Chevron, Shell, and ConocoPhillips.  Subsidies also go to “independent” oil companies which, which are larger operations than the name implies.  These companies produce about 50% of the oil.  The rest of the subsidies are earned through loans or aid certain types of operations such gas exploration and production at an estimate value of $18.5 billion on the federal level and $21.6 billion on the state level.  After that, there are consumption subsidies which amount to $11 billion.  Along with the subsidies, infrastructure loans are provided to the companies which amount to about $4.7 billion.  It shouldn’t be noted that the article goes on to recommend that these subsidies be reduced and also outlines roadway maintenance and health concerns.  That being said, I am trying to keep the references focused on the raw data in this section.

In comparison, the subsidies for renewable energy are lower.  A report by Nancy Pfund and Ben Healey shows that the renewable energy has a lower initial investment and projected investment over a 30 year span overall.  The historical average of annual subsidies of renewable energy is $370 million as compared to $4.86 billion for oil and gas, $3.5 billion of nuclear and $1.08 billion for biofuel.  Interestingly enough, nuclear had far greater initial investment than the other forms of energy; however, safety concerns caused there to be a large reduction those investments.

My current opinion is that we need to strip away a lot of the “blank check” type subsidies.  While there are probably subsidies for every industry that could fit in this category, the worst offender in this regard is the oil and gas industry.  I also think that some practicality is warranted too.  In my opinion, oil and gas will still always be the best option for hauling goods across the country for the next couple of decades.  Renewables can’t provide the efficiency needed and other tech such as nuclear is not scaleable enough for that yet.  For electric power production, I believe renewables can’t completely fill that gap either and stable energy production is needed for peak hours.  With all that being said, a balanced merit system needs to be applied to energy subsidies to produce the most sustainable energy infrastructure possible.

What is your opinion on how to best subsidize energy industry?  What is your opinion on the current state of subsidies?  If you enjoyed reading this post, like this post and share it.  Thanks for reading have a good day.

Sources

“Fossil Fuel Subsidies”, Oil Change International, 2014, http://goo.gl/BYdMg

Nancy Pfund and Ben Healey, “What Would Jefferson Do?: The Historical Role of Federal Subsidies in Shaping America’s Energy Future”, September 2011, http://goo.gl/XuioTH

Image Source

Roger H. Bezdek and Robert M. Wendling, “Energy Subsidy Myths and Realities”, June 2012, http://goo.gl/A8Ws96

Application of 3-D Printing and Modular Design to Construction

Hello everyone, I hope you guys had a good weekend.  Today I would like to discuss a couple innovations which apply 3-D printing and modular design innovations to construction practice.  These are applications that were more common in manufacturing and prototyping initially but can be applied to construction as well according to the article by Business Review Weekly.

The first innovation is the application of 3-D printing to the creation of moulds for precast concrete.  Traditionally, other materials such as wood, foam or rubber have been use, and constructing these moulds could take months to construct.  The Laing O’Rourke Company has developed a method that 3-D prints a large scale wax substrate mould at a rate of 150 kg/hr using a robots.  They have applied this to common projects such as stormwater pipes and have achieved cost savings of 50% to 90%.  Additionally, this solves the waste problem because the wax mould is lifted off or melted away in a water bath after the concrete is cured.  The wax can then be filtered and recycled.

The second innovation is the use of modular components in hospital construction.  Hospitals are one of the most expensive areas of infrastructure because they are individually designed.  Hickory Group has developed a modular panel for use in reception and administrative areas.  These areas use what is referred to as “accommodation components” which constitutes up to 40% of the construction cost of a hospital.  By using the modular panel, construction time can be cut by 40%.  Furthermore, the panels are easily replaceable.  If a panel is damaged, the hospital  can simply order a replacement and have their maintenance worker install the new panel.

Both of these are very good innovations in my opinion.  They are taking methods that have been proven effective in several previously tested applications and expanded their usage.  Furthermore, a reduction in time of construction and cost of maintenance/construction has been achieved.  I would be interested in seeing a more detailed account of the numbers and statistics.   However, based on the information provided, these are great examples of low risk/high reward solutions that can greatly improve construction practices.

What is your opinion on these innovations?  Do you think they’ll be effective?  If you enjoyed reading, like the post and share it with your friends.  Thanks for your time and have a good week!

Sources

Michael Bleby, “BRW Most Innovative Companies 2014: Why Construction Companies Are Thinking Like Manufacturers”, Business Review Weekly, October 9, 2014, http://goo.gl/O0oD6E

Image Source

Anne-Mette Manelius, “Concrete After Dark – Is There An Afterlife for Concrete?”, Concretely, October 17, 2014, http://goo.gl/IYI6q2

Benefits and Constraints of “Self Repairing” Asphalt

Hello everyone, I hope your week went well.  Today I would like to talk about current research in designing “self repairing” asphalt.  Erik Schlangen, a civil engineer from Deft University in the Netherlands, is doing research with the goal of creating asphalt that can repair itself.  Schlangen has started testing an asphalt mixture made of basic asphalt with strands of steel wool mixed in.  His research shows that the asphalt when heated with microwave radiation will melt the asphalt so that the cracks will be smoothed out.  Schlangen has invented a vehicle which uses induction coils to heat the road and melt the asphalt/smooth out the cracks.  To properly maintain the asphalt roads, repairs would need to be performed every 4 years.

There are a some benefits I see with this:

Maintenance Cost

Currently, one of the biggest costs in the infrastructure industry is maintanence and repair.  If this is truly as effective as it seems, it could save a lot of money and free up some room in the budget for other projects.

Maintenance Schedule Requirements

The other big issue when considering maintenance and repair of infrastructure is time.  Living in Dallas, I am currently experiencing this issue right now.  If repair or maintenance takes a long time, it can make traffic conditions worse long before it improves them.  With this technology, repairs can be done quicker and will reduce the poor traffic conditions as a result.

That being said, there are some potential issues that aren’t addressed in the article:

Durability

The obvious issue in durability is the asphalt.  Since the asphalt can melt when heated theoretically, will it also be stiff enough to withstand the loads.  There are a lot of heavy trucks that travel over a highway on a daily basis and this adds to maintenance issues as it is.  Furthermore, at what point does the damage become too much to repair?  If this asphalt system is not durable enough, the technology becomes ineffective.

Scaleability

When and where can this be used? On most the of the highways in D/FW, traditional concrete topping is used.  If this asphalt system cannot be applied on a larger scale, the increased equipment and training cost for the maintenance itself will be greater than the cost savings of the technology.

I look forward to seeing research on this product.  If this is effective, this could improve the maintenance of our infrastructure a lot.  What are your opinions on this research?  Do you see any other potential benefits and/or issues?  If you enjoyed the article, feel free to like it and share it with your friends.  Thanks for your time and have a good week!

Source

Jason Fell, “Self Healing Phones? Try Roads That Fix Themselves”, Enterpreneur, September 16, 2014, http://goo.gl/a6uk5z

US Depart of Transportation, Federal Highway Administration, “What Can Be Done to Enhance HVUT Revenues?”, 2006, http://goo.gl/sG9VlF

Image Source

Karissa Rosenfield, “Erik Schlangen Demonstrates the Potential of ‘Self Healing Asphalt'”, archdaily, July 12, 2013, http://goo.gl/794P6

Benefits and Implementation of “Green” Urban Design

Hello everyone! I hope everything is going well.  This week I would like to talk about the incorporating “green” elements to city planning. I read an article a while ago that pointed out some interesting aspects of city life.  Most people who live in cities don’t notice nature around them in cities, instead they go on vacation to find nature.  Furthermore, more and more of the world’s population lives in cities.

This article listed the following benefits of the inclusion of nature into a city:

  • improved health and lifestyle
  • increased lifespan
  • reduced stress and aggression

Traditionally, the use of green space has been an aesthetic concern rather than a requirement for psychological health.  In addition to that, most urban planners haven’t claimed ownership of the issues related to lack greenery in the cities.  However, that is changing in Detroit, Europe and Singapore.  The researchers believe that greenery needs to be incorporated into urban planning from the ground up.

The article recommends that urban planners start incorporating the following elements to urban planning:

  • to consider the value of the greenery in an area before starting construction
  • to cluster homes and leave some easily accessible locations with greenery or natural elements around neighborhoods for city dwellers
  • to quantify the costs/benefits of different types of greenery and invest in them accordingly

While I think that some of the contributors come across as overzealous at moments, I agree with the concept.  Some of my most relaxing moments when I lived in Arlington, TX were the times I spent running at River Legacy Park.  It was a park that had a great section of in which I could loose myself in nature and reach a zen-type running state.  This article highlights benefits of incorporating nature that I have experienced myself.

What are your thoughts on incorporating nature into cities?  Do you agree with the articles assessment?  What would you do to incorporate nature into cities?  If you enjoyed the post, like it and share it with your friends.  Thank you for your time and have a good week!

Source

Anderson, Erin, “How Green Cities are Better for us Physically and Psychologically”, The Globe and Mail, July 5, 2014, http://goo.gl/PgM8Da

5 Critical Assessment Questions for Design Safety

Hello, I hope everyone is doing well.  Work has slowed down for me a bit, but I did go on a site visit recently where our firm inspected a floor structure collapse.  The collapse reminded me of the responsibility engineers have in regards to occupant/pedestrian safety and I would like to discuss some of my thoughts about that.  In this post, I will share the 5 questions that addressed to ensure a safe design.

  

1) Would you would feel safe?
The floor collapse first reminded me of a quote (written by Michael Armstrong) that I read a long time ago.  “The ancient Romans had a tradition: whenever one of their engineers constructed an arch, as the capstone was hoisted into place, the engineer assumed accountability for his work in the most profound way possible: he stood under the arch.”  When you design something, the safety of the occupants and other pedestrians is critical; if you don’t believe that you did everything possible to safely design the structure, then it shouldn’t be considered safe for other people to use either.
 
2) Are you qualified to make the decision?
In designing a structure, it is critical to have the necessary qualifications.  This ensures that you have practiced enough engineering and gotten enough experience in the design process.  Knowledge is important; however, just knowing how to do something does not mean you can adequately design the structure and all the parties involved can stand behind your decision from a legal perspective.  The best engineers have extensive practice and repeatedly executed the design process so that they know how to analyze the design instinctively. 
 
3) Do you have enough knowledge to make the decision?

This is similar to the previous point, but this gap in knowledge can also happen to an experienced engineer.  A design can start out being in one area of focus, but shift to another very quickly.  Or the scope of the design could not be very focused at all, and as time goes on the focus gets far more detailed which requires special education.  When this happens, it is critical that you as engineer obtain this knowledge and/or get some consultation from some one who as this knowledge.  If you don’t, it leaves doubts as to whether the design will perform as desired.
 
4) Are there unique circumstances that might make this situation different?
A design could also fail due to unique circumstances that were overlooked.  For example, you may be designing a structure that has been done a million times before but is constructed differently.  Or the structure and/or area around it could be different.  Whatever it is, these unique circumstances could change what is required for a safe design.  If these unique circumstances are overlooked, a critical check in the design process could be missed.
 
5) What is at stake if you are wrong?
Different buildings are used for different purposes.  Depending on the purpose, the cost of failure could change drastically; either in terms of pedestrian safety or the usage of the building.  To ensure that the design is safe and the community is not drastically impacted by it’s failure, the consequences of being wrong needs to be considered.
 
In my opinion, these are the 5 critical questions that need to be addressed for design safety.  What questions do you think are important for design safety?  Are there any critical questions I missed?  Thanks for your time and have a good week!
 
Image Source

Growth of the “Forgotten” Renewable Energy

Hello, I hope everyone is doing well.  Today, I would like to discuss a recent growth in geothermal energy.  Geothermal energy uses the power of water heated to steam temperatures to spin turbines that produce electricity.  Geothermal energy is sometimes described as the “forgotten” renewable because it is by far the least popular and well known renewable energy compared to wind and solar.  Furthermore, geothermal energy only produces 1% percent of electrical power worldwide according to the World Energy Outlook.  However, geothermal energy is growing as drilling for oil  and natural gas increases.  The Geothermal Energy Association reports that geothermal resources grew by about 4% to 5% recently.

Interest in the geothermal industry is growing internationally as well as domestically and international development banks are helping to finance these projects.  According to Maria Richards at SMU, “If you’re  wildcatting for geothermal, Africa is really of those parts of the world where we seem to be going…”  Large projects are also planned for Indonesia and some Central/South American countries as well as East Africa.  In addition, the Ring of Fire is a current hot spot for new production because it has high temperatures relatively close to the earth’s surfaces.

There are several benefits to the use of geothermal energy.  Compared to other electric power production methods, geothermal energy can heat and cool homes at lower temperatures.  This source can also be used to produce energy consistently 24 hours day, unlike the other renewables which are intermittent in nature.  This could also be a good alternative source of energy for countries, like Kenya and El Salvador, that rely heavily on hydroelectric energy.

However, there are disadvantages to geothermal energy as well.  Research has found that 50% to 60% of a typical geothermal drilling project is up front with a 10% to 30% chance that the drilling will be unsuccessful.  Richards sums it up best with this observation: “You can put out a meter and measure easily how much wind and solar is at a site.  You can get real data.”  But it is “much harder to understand” how much geothermal hot water is available in a certain area.

The recent developments of oil and gas have allowed for increased research in this field though.  The drilling has allowed researchers to improve data on temperature, water availability and seismic data.  Furthermore, the researchers at SMU hope to incorporate previously drilled oil and gas wells, like the Huabei oil field near Beijing, to produce small scale geothermal power.  Countries that are trying to reduce their reliance on traditional fuels are the ones pursuing this research most actively.  China is trying to increase their geothermal production to reduce their smog and ease reliance on traditional fuels for their growing population.  Munich, Germany is hoping to obtain all its heating from renewables by 2025 and plans on most of it being geothermal. It is also predicted that many more places around the Ring of Fire will develop geothermal energy faster than other locations as research continues.

I am interested to see how this industry grows with the development of this research.  It is my opinion that this energy has the potential to fill the gap that other renewables have in regards to consistent energy production.  Furthermore, the knowledge gained from oil and gas drilling, as well as the previously drilled wells, could greatly reduce the up front costs.  What is your opinion on this renewable resource? What are your predictions for the future of this industry?  Be sure to follow me and share this article if you enjoyed it.  Thanks for your time and have a good week!

Reference:

Galbraith, Kate, “Geothermal Industry Grows, With Help From Oil and Gas Drilling”, New York Times Online, July 23, 2014, http://goo.gl/ixL318 

Benefits of Reusing Composite Shingles in Asphalt Roadway Construction

Hello everyone! I hope y’all have been doing well.  Today, I want to talk about an interesting innovation I read about the construction of O’Hare Airport. (http://goo.gl/WjI8Ek)  They collected used composite asphalt shingles and used them as part of the asphalt binder in the runway and various road type structures for the facility.  In this post, I will outline the process and the benefits.

 
The process:
Old Shingles Are Collected:
First, shingles are collected for reuse in the system.  At first, there weren’t any incentives added to motivate people to recycle used shingles.  However, some incentives have been created through different programs in various locations – all them outlined in the article.  One of them is a ban on sending large amounts of shingles to the landfill.  Another concept is an increased charge for disposing of shingles as compared to providing them for reuse.  The only exception is shingles that incorporate asbestos in their production and various limitations are discussed for reducing that risk.  Overall, the incentives seemed effective in my opinion.
 
Shingles are mixed into a pure asphalt binder:
The next step is that shingles are ground up and melted.  Once melted, this product can be added to the pure asphalt binder to increase the volume of this asphalt binder product.  At O’Hare airport, the shingles made up a 3% percent portion.  This didn’t make a huge dent in the budget but depending on the project it could reduce costs more.  Statistics and comparisons are provided in the article.
 
Asphalt is Laid Like Normal:
The asphalt binder and resulting asphalt is used like before.  As long as any differences in material properties are accounted for, the design and construction remains the same.  This results in an easy implementation on the construction and design side of the process.
 
The Benefits:
Reduced Use of Oil:
Oil is a precious commodity; anytime it’s usage is reduced, I consider it a good thing.  Along with that, it is easier to get a hold of used shingles than oil.  For both of these reasons, I consider the reduced oil usage a considerable benefit.
 
Reduced Cost:
The cost of using reused shingles is lower than using a pure asphalt binder.  Unless the scale is large, it is a minimal cost difference.  However, considering the scale of infrastructure cost these days and the amount of repairs needed, the scale is large enough that it would make a difference.
 
Reduced Waste:
These shingles, if not used in this capacity, would most likely be going to a landfill.  The lack of landfill space and shear quantity of human waste going to landfills is a current issue and reducing the amount from the housing would be a large contribution towards reducing that waste.
 
What is your opinion on the usage of this mixed asphalt binder?  Does it provide enough benefits to outweigh the cost and effort of changing the process?  Are there any noteworthy drawbacks or additional benefits not mentioned?  Thanks for your time and have a good week!
 
Sources:
Jon Hilkevitch, “Getting Around: Old Shingles Get New Life on O’Hare Runway”, Chicago Tribune News, June 30, 2014, http://goo.gl/WjI8Ek
 
Image Source:
“Why Homeowners Should Choose Asphalt Roofing Shingles Recycling”, Asphalt Roofing Shingles Recycling, October 18, 2012, http://goo.gl/u9l7cD

Post Navigation