Thoughts on the Engineering Industry

A blog covering engineering, technology and business topics

Archive for the category “Architecture”

Incorporating Engineering into Government to Improve National Programs

Hello everyone, I hope y’all have been doing well.  Today I would like discuss ways to improve our country by involving engineers and engineering concepts in the management of our national systems.  I have narrowed it down what I believe to be the 5 basic ideas.  As a reference, I have used data and assertions made by Evan Twarog in an article describing the role technocracy in China.

1) Become more technocratic in regards to politics

Data shows that the government is mostly run by engineers in China and in the government in the US is mostly run by lawyers.  In addition, Chinese people believe that knowledgeable elite should run the government which led to a technocracy being a part of the political system.  Based on the way government seems to operate in the US, I could see a shift towards the concept technocracy being beneficial for the U.S. as well.  Especially considering some of the issues that confront us, such the deterioration of the infrastructure, climate change, drought in various areas through out the country, and the production of energy in regards oil, wind, solar, etc.  A technocracy provides the critical knowledge and skill sets to properly deal with these issues.

2) Any problem can be solved with an engineering mindset

Engineers have a unique skill set that allows them to solve problems through a standard process.  On a personal level, I apply this mindset to difficult decisions in my life.  I bet you a lot of engineers say the same thing.  I don’t know about them but it works well for me.  And when considering the successes and failures of both China and the U.S., a correlation between the application of technology and the engineering mindset can be observed.  A good example of that in the U.S. is the space program and national arms race in general.  It is this correlation that leads to believe that the engineering problem solving mindset would be a good framework to apply to struggling government processes and programs.

3) An education in a technological field is more respected by society

For years, the culture in China has valued being technologically informed.  This means that changes in the direction of the country are more easily understood and communicated to the masses.  This is not to say there aren’t people capable of doing that here in the U.S., but there still seems to be a large portion of the political system that caters to the lowest common denominator instead of embracing the intelligence of the U.S. population.

4) Some projects need support from the government to succeed

A lot of the great engineering accomplishments require a large amount resources to back them up.  There are very few people and companies that can fully implement these systems.  This means that if there is some technology or engineering program that would improve our country and it is sufficiently large enough that it would be difficult for private organizations, government should not be afraid to step in and help.  If applied with an engineering problem solving mindset and backed by an informed public, these projects should benefit the country overall.

5) Export your technology for economic profit

This is where the practicality of investing money in solving these problems is realized.  In a perfect world, providing infrastructure and services to improve the lives of people is enough.  But government cannot be expected keeping doing so if it cannot be maintained as far as resources are concerned.  This means that sharing the technology nets the government money which can be used to further improve in other areas.  Business concepts like public-private partnerships were designed to improve profits and gains for the country through the development of these infrastructure and service ideas.  If we can keep this end goal in mind, it can ensure that all government systems improve the country socially and economically.

What is your opinion on these 5 concepts?  Is there anything you would add or take away and why?  If you enjoyed reading the blog post, be sure to like the post and share it with your friends.  Thanks for your time and have a good week!

Source

“The Three Gorges Dam, Why China is Run by Engineers”, Twarog, Evan, Atomic Insights, April 13, 2015, http://goo.gl/sZf3Zn

Advertisements

3-D Printed Buildings Elements Created from Building Construction Waste

b4

     Hello everyone, I hope y’all have been doing well.  Today I would like to talk about an improved application of 3D in building construction.  For a while now, 3-D printing has been applied to building construction on a smaller scale.  However, the large portion of the structure has still been constructed using conventional methods.  Experts in various fields of building design and construction have been researching applications that expand the usage of 3-D printing in building construction.  This is an area of building construction expertise in which China has recently lead the global market according to Brittney Stevenson.

In April 2014, WinSun Decoration Design Engineering Co. revealed that 10 homes were constructed entirely out of a 3-D printed, recycled concrete material – an advancement that surprised the engineering and construction community.  In January 2015, it was revealed that WinSun had made further advancements in the applications of this 3-D printed material.  A 6-story apartment building and home has been constructed and the apartment building itself has an approximately 1,100 square meter floor plan.

The 3-D printed elements were created by inputing a CAD file into a 20′ tall, 33′ ft wide, and 132′ foot long machine printed using a concrete mixture.  The concrete mixture includes concrete, fiberglass, sand and a hardening agent.  The usage of this material allows for improved reusage of general construction waste while also being flexible, self-insulating and resistant to earthquakes.  Reinforcement was used where further strength was required and some of the larger pieces were built off site and transported there.  Details of the of building construction process are listed in the article.  According to WinSun, they are able to save 60% of the materials required for home construction, construct the building in 30% less time than traditional construction and reduce the required labor by 80%.

These are impressive results if true.  I still wonder about the expense of owning and maintaining the machine might be a hindrance at first. And I would hope the cost of collecting the construction waste and creating the concrete mixture is included in those statistics.  I think this is a good innovation, especially for low rise buildings since the loads and stresses are lower (although I believe a 6 story building is pushing the limits of standard low rise construction).  I would be interested to see how the material ages in regards to long term durability as well.  Overall, there are several applications that this would be useful for in the building construction industry.

What your thoughts on 3-D printed building elements? What about the concrete mixture used?  Have you heard of any other building materials being used in relation to 3-D printing?  If you enjoyed the article, please like it and share it with your friends.  Thanks for reading and have a good week!

Source

Brittney Stevenson, “Shanghai-Based WinSun 3D Prints 6-Story Apartment Building and an Incredible Home”, 3D Printer & 3D Printing News, January 18, 2015, http://goo.gl/TwVSKC

What does it truly mean to be an expert?

Hello everyone! I hope y’all had a good week.  Today I just wanted to share a quote I read online that describes what it means to be an expert in a field of study.  The quote is from Pablo Picasso: “Learn the rules like a pro, so you can break them like an artist.”

Pablo Picasso is well known for his abstract art that was definitely considering breaking the rules at the time.  Yet he was a legitimately good artist, which means he was technically a professional painter.  It initially seems like a a quote anecdotally reference to his views as an artist. However, if you dig a bit deeper into what is really beings said, it can be applied to a lot of different fields of study.  Think about a business man.  He might have some issues in selling a product.  There is probably a standard process that is followed to resolve the standard issues, but in this case it might not apply.  Therefore, by knowing the rules, he knows when is the right time to break them to achieve the results he desires.  It can be applied to engineering or science type stuff as well.  Every new break through in science and engineering occurred because some who would be considered a pro and studied in their field made a connection that hadn’t been made before.  They succeeded because they went against the norm (“broke the rules”) at the right time and discovered a way to improve a product, project or application.  So with this greater concept in mind, it becomes clear that an expert in any field of study knows not only when to follow the standard rules in a given situation, but also when those rules don’t apply and another solution needs to be found.

With that being said, I am going to leave you guys with this thought and hopefully you can implement it well in your career or life general – never get so caught up in the rules that you forget to break them when it comes time to do so.  As I have told many people before about my job, I have a lot of boring days where people wonder why I need my degree and other technical skill sets to do my job.  However, that knowledge informs me when a serious situation could come up that needs to be addressed, and I used that knowledge to prevent any further issues.  How do you guys interpret the quote?  Is there a particular story and event that describes your opinion?  If you enjoyed reading, like the post and share it with your friends.  Thanks for your time and have a good week!

Image Source

“Problem-solving is the Problem”, Florian Totu, blog.opteemum.net, August 10, 2012, http://goo.gl/YNzbI4

Application of 3-D Printing and Modular Design to Construction

Hello everyone, I hope you guys had a good weekend.  Today I would like to discuss a couple innovations which apply 3-D printing and modular design innovations to construction practice.  These are applications that were more common in manufacturing and prototyping initially but can be applied to construction as well according to the article by Business Review Weekly.

The first innovation is the application of 3-D printing to the creation of moulds for precast concrete.  Traditionally, other materials such as wood, foam or rubber have been use, and constructing these moulds could take months to construct.  The Laing O’Rourke Company has developed a method that 3-D prints a large scale wax substrate mould at a rate of 150 kg/hr using a robots.  They have applied this to common projects such as stormwater pipes and have achieved cost savings of 50% to 90%.  Additionally, this solves the waste problem because the wax mould is lifted off or melted away in a water bath after the concrete is cured.  The wax can then be filtered and recycled.

The second innovation is the use of modular components in hospital construction.  Hospitals are one of the most expensive areas of infrastructure because they are individually designed.  Hickory Group has developed a modular panel for use in reception and administrative areas.  These areas use what is referred to as “accommodation components” which constitutes up to 40% of the construction cost of a hospital.  By using the modular panel, construction time can be cut by 40%.  Furthermore, the panels are easily replaceable.  If a panel is damaged, the hospital  can simply order a replacement and have their maintenance worker install the new panel.

Both of these are very good innovations in my opinion.  They are taking methods that have been proven effective in several previously tested applications and expanded their usage.  Furthermore, a reduction in time of construction and cost of maintenance/construction has been achieved.  I would be interested in seeing a more detailed account of the numbers and statistics.   However, based on the information provided, these are great examples of low risk/high reward solutions that can greatly improve construction practices.

What is your opinion on these innovations?  Do you think they’ll be effective?  If you enjoyed reading, like the post and share it with your friends.  Thanks for your time and have a good week!

Sources

Michael Bleby, “BRW Most Innovative Companies 2014: Why Construction Companies Are Thinking Like Manufacturers”, Business Review Weekly, October 9, 2014, http://goo.gl/O0oD6E

Image Source

Anne-Mette Manelius, “Concrete After Dark – Is There An Afterlife for Concrete?”, Concretely, October 17, 2014, http://goo.gl/IYI6q2

Development of Transparent Concrete

litracon 1 Concrete Innovation Part 3: Design transparent inflatable Concrete Cement

Hello everyone! I hope the last couple of weeks has gone well.  I was preoccupied with a small vacation, school stuff, and having to get a new vehicle since my car was totaled.  However, I hope to get back on schedule after this.  Today, I would like to talk about a new development in concrete technology: concrete designed to be transparent.

According to the article by Giatec Scientific, the concrete mixture is modified such that 4 to 15 percent of the mix is fiber optics materials.  Ideas for transparent concrete since 1935; however, serious development had not been pursued until 2001 by Áron Losonczi for use in his architectural designs.  In 2004, production was started for other commercial usage as a type of concrete called “Litracon.”  Since then, other competitors have developed similar designs.  These products have been used with back-lighting or natural light.

I think the concept is very interesting.  It’s something I would probably enjoy working with or using in a design.  The aesthetics would be amazing to see and I like the idea that it could be used in circumstances where you need more stiffness than a big window could provide.  The situation would be similar to structures that use the glass masonry units.  There are however some issues I can see. One is when and where can it be used safely.  The article mentioned examples where it’s used in floors and floors can see a lot of loading in certain types of situations, i.e. stadiums or concert halls.  The other issue I see is behavior of over time.  Will the bonding of the cement hold up in a mixture with that much of a potential void ratio?  Even if it holds up in regards to it’s initial bonding, will the mechanical strength related properties such as creep and general durability such as cracking be reduced?  Along with that, I would imagine the aesthetics have to hold up as well.

What are your thoughts on the idea of transparent concrete?  Is it something that is practical to use in building design?  If you enjoyed the blog post, feel free to like it and share it with your friends.  Thanks for your time and have a good week!

References

Giatec Scientific, “Concrete Innovation Part 3: Design”, http://goo.gl/Ee7VBo

3 New Applications for Bamboo in Building Structures

Hello everyone! I hope everything is going well. Today I would like to talk about some potential uses for bamboo that are being incorporated into building structures.  Bamboo is most commonly used as a structural element in middle and lower income housing in China or Latin America.  It’s usage has started to expand to the eco-tourism structures as well, but is still mostly used for it’s aesthetic appeal in main stream structures.
 
Bamboo has previously not been considered useful in structural building design in comparison to other materials.  However, there are some properties that could be useful.  Bamboo is flexible, shock resistant, and more readily available in certain areas of world.  Below is a list of three applications involving bamboo that could be useful for building design in my opinion.
 
1. Wood Framing Material
The flexibility and shock resistant nature of bamboo could make it a very useful wood framing material.  There are certainly stronger and stiffer wood framing materials available on the whole.  However, depending on the accessibility and the requirements of the structure, bamboo could meet the load capacity demands.  Furthermore, methods such as the ones listed below could be applied as well.
 
2. Linking to Create a Wall
The bamboo can be linked together to create a wall.  It can be curved or straight and be equally easy to construct/build in both methods.  The solidity of the wall can be changed as well.  The article source mentions a process where the bamboo is cut in half, hooked to the next section, and then linked together.  There are plenty of creative options for creating a wall that follows this basic principal that would replace a traditional wood sheathing wall.
 
3. Concrete Reinforcement
The bamboo can be filled with concrete to increase the overall stiffness and crushing strength of the bamboo system.  The way that best describes the benefits is modern masonry – the only difference is the location of the different elements.  For masonry, the exterior part provides the stiffness and crushing resistance while the interior reinforcement provides the flexibility and tension strength.  It would be the opposite in the case of bamboo.  Using this method, the load bearing capacity of a bamboo wall, floor, or framing system could be greatly increased.
 
What is your opinion on the use of bamboo in building structures?  What is your opinion on the applications mentioned above?  Are there any other applications you can see being beneficial?  If you enjoyed the post, like it and share it with your friends.  Thank you for your time and have a good week!
 
Source
 
Ahlblad, Hannah, “Merging Bamboo and Concrete for the Emerging World”, ArchDaily, August 13, 2014, http://goo.gl/ROolCU 

Design Issues for an Affordable DIY Tornado Shelter

Hello everyone. I hope y’all are doing well.  I’ve been taking some time to plan my move to the new job and be as ready as possible for the new job.  Today, I would like discuss the design of affordable DIY tornado shelters.  For reference, I will use a rough description of a study performed by Research Engineer Bob Falk of Forest Products Laboratory in Madison, WI. (http://goo.gl/qRM87t)

Tornadoes have always been a risk for people living in the midwest; and as a result, the design of wind and debri resistant structures has always been part of the house construction conversation.  There have been more technical and more resource intensive design/construction ideas discussed before.  However, the reason I chose to do a blog post using this source is because the goal is a design that can resist 250 mph winds and debri using only affordable wood and construction methods.  Additionally, the construction process is to be something that uses only basic construction skills.  I really like this concept not because this is the perfect solution, but because this is good starting point for people to be reasonably safe.  The design is constructed using interlocking timber with plywood overlay and the wood structure is connected to a concrete foundation using bolts.  The door is still designed using steel; however, Falk is researching a way to use a wood door.  The structure is currently undergoing testing using 2 x 4’s shot at 250 mph.

I believe that this would be a good design/construction process once the following issues have been addressed:

A repeatable design plan:

Whatever this design may entail, there needs to be an empirical, repeatable process that can be easily designed and built.  A good plan should include the following at minimum: door frame requirements, bolt spacing requirements along the wall, nail spacing requirements along the plywood and interlocking timber sections, timber grading requirements, concrete foundation requirements, and roof connection requirements.

Design Study of the Door and Frame:

As far as wind is concerned, one critical issue is the door and the frame around the door.  And especially after reading this article, it came to my attention because nothing is mentioned about the study of the frame.  The design uses a steel door, so the door shouldn’t be the issue in that case.  However, if the frame can’t resist the winds in the the hinge and bolt system and the wall/frame connection around the door the door system, it will fail to resist the loads.  Some basic wind tunnel testing should be a good starting point.

Bolt Connection to the Foundation:

The walls shouldn’t be the critical part of the wall if this is constructed as it says.  Yes, would splinters and could be dangerous; however, if the testing is occurring as described and enough strength is provided based on these studies the walls shouldn’t splinter.  However, there will be some very high shear and moment loads on the bolts.  If not adequately tested and designed, the wall could break of along the foundation.  I would argue that this even more critical as well since it would affect a whole section of wall, so I believe details need to be examined here.

Roof Connection and Design:

With the increased wind, the uplift forces on this structure will be very high.  Furthermore, I believe this has to be designed as an independent structure as well as a structure that is part of a larger building.  With this in mind, uplift forces applied to the whole structure of the second floor or roof needs to be considered as well.  Connections at the top of the wall need to be able to resist that full load or design needs to allow for relief of those forces if the house breaks around the shelter.  Either way, study and wind tunnel tests are required for a safe design.

What is your opinion on the shelter mentioned in the article?  Do you agree my assessment of the design?  Is there anything I missed?  Please share this post if you enjoyed it and have a good week!

An Innovative Technology for Concrete Roofing in Remote Areas

     Hello everyone! I hope y’all are doing well.  I’m almost done with grad school and looking forward to that.  Other than that, nothing much has happened.  Today, I would like to discuss a recent development in concrete roofing for remote areas.

     Scott Hamel, a faculty member of UAA (University of Alaska Anchorage), has developed a concrete roofing tile that can be used in place of cast in place concrete roofs.   While working with Habitat for Humanity in Port-au-Prince, Haiti, Hamel noticed that the prefered method of roofing is a cast in place concrete slab because it can double as a second floor if needed and was more resistant to the wind and elements.  However, these roofs weren’t adequately designed in regards to seismic issues and this caused a lot of trouble in the Haiti earthquake of 2010.  Additionally, the usual method for constructing these roofs is to carry up the concrete manually to fill the form work for the roof which is highly labor intensive.  These two combined issues lead him to create an innovative new system for creating concrete roofing.  It is concept that was widely used when making clay roofing tiles up until the 1950’s when improved techniques become more common.  He created a “thin shell, latex modified concrete barrel roof unit” – curved concrete roofing tile in which latex from old paint is added to create to increase flexibility.  To build the concrete shell unit, a mold was designed and the modified concrete is poured in to the mold with mesh metal reinforcement located in the center of the cross section.  Testing is being conducted to determine the optimal shape in regards to stresses and construction applications.

     There are several benefits to using this type of roofing system.  The main one is ease of construction in my opinion.  The roof tiles can be made on site on the ground or off site and easily be taken up a ladder to be put together on the roof.  Another benefit is the cost; according the article the tile will cost $2 – $3 per a square foot versus $6 – $10 per a square foot for cast in place concrete.   The other benefit I find very useful that isn’t mentioned in the article is that it is easily repeatable.  Someone with very little experience can build a safe roof and when there is a crisis like a natural disaster a large quantity of these concrete tiles can be built very efficiently on a larger scale as well.

     Do you think this would be a good roofing system for a remote area?  What if any issues do you foresee?  Are there any other applications this could be useful for as well?  Thanks for your time and have a good week!

Source

Kathleen, McCoy, “Hometown U: A Smarter, Stronger Roof Design for Haiti and Beyond”, Hometown U, March 1st, 2014, http://goo.gl/xk4k23

Visual Project Management for Construction Managers Using Google Glass?

Hello everyone – sorry about the long break.  I’ve been in the process of moving the last few weeks and I didn’t get internet until about a week ago.  Now that I am almost back to full productivity I should be doing regular posts again.  And now I can look forward to writing some of these posts on my back porch which will be nice too.  Today I want to talk about an application in development for Google Glass which would allow a construction manager to see a visual of future building elements to aid in the construction process. (Article: http://goo.gl/G6audi)

This application has a few benefits that I can foresee.  The main one is that the user can visualize what needs to be done and what it should look like.  I could also see how it would take a complicated construction drawing and help clear up any confusion as to what the specifications should look like.

However, I also see a lot of drawbacks.  The first one is location issues.  If there is any trouble in determining the user’s location, the visual provided will be inaccurate and that is worse than using less convenient methods.  Additionally, creating the model and making sure the users on site are familiar with the tech would be difficult as well.  And finally, I would think that if the application isn’t designed well, information overload and application management could be a hindrance that slows down the work to the point that it out weighs the benefits of having this visual representation.

The benefits gained by having the application aren’t worth the added issues in my opinion.  Combine this with the fact that construction managers should already be able to visualize and build the specifications from construction drawings cause this application to be more trouble than it is worth.  This is not to say that I think technology is not useful on construction sites.  I believe that being able to have a synced database for construction drawings and models would be very useful for a tablet application in a lot of situations.  However, there is only one time I see the Google Glass application being useful and that is for people inexperienced in construction/engineering such as owners to walk around an incomplete project.

What is your opinion on this application?  Are there some different applications for construction managers that would be good for Google Glass?  Thanks for your time and have a good week!

Reference

“Google Glass for Construction?”, ConstruTech, March 18, 2014, http://goo.gl/G6audi

Image

Orson, Parmy, “Why You’ll See Google-Glass Competitors In Construction Zones Before Starbucks”, Forbes Magazine, March 11, 2013, http://goo.gl/TYBuv

Benefits of BIM Modeling in Project Pricing for Head Contractors and Subcontractors

     Hello.  How is everyone doing?  Today I would like to discuss the statistical breakdown of the benefits in project pricing BIM modeling can provide for the head contractors and subcontractors involved in the design process.  BIM modeling is something that is collectively touted by most innovators in the building and infrastructure design/build field.  However, it would be helpful to understand who has the most motivation to implement improved BIM modeling.  As stated by David Mitchell, “For different types of projects the people you need to engage, changes. We need to acknowledge that the savings arising out of a building project differs significantly to those of a civil or resource project.  There also needs to be an appreciation of when a construction contract or subcontract is formed as well as the type of construction contract that has been entered into.”  Therefore, the issue is approached in regards to those factors.

For a commercial scale building project, the indirect cost such as design and overhead management amounts to 17% as compared to 83% for the construction costs.  In addition, the ratio of margins between subcontractors and contractors is 7 to 1.  Therefore, it benefits the subcontractors the most to apply the BIM modeling.  However, when a civil project is considered, the head contractor sees most of the benefits because subcontractors only control 17% of the costs.  The resource sector has some interesting statistics as well.  First of all, for a pipeline, the indirect cost is far greater at 45% of the cost going to head contractors.  In addition, the head contractor owns the material production plant/labor and the resulting cost accounts for 83% percent of the other 55% which amounts to an additional 46% of the direct cost and 91% of the overall cost.  Therefore, in this case, the head contractor holds a large portion of the cost control.  However, when building a refinement plant there are some critical differences.  There is a similar level of indirect cost cost at 45%, but the subcontractor sees 88% of the direct cost in this case.  The result is the subcontractor seeing 48% of the cost of the project as compared to 9% in the previous example.

The above statistics are interesting for several reasons.  The first one, as stated in the article, is the fact that BIM modeling is implemented by head contractor and other associated designers; yet in some cases, the subcontractors see the benefits.  Seeing as changes in pricing are based on estimation based on previous projects, pricing benefits aren’t planned for in the budget as efficiently, and, depending on the project and head contractor, a subcontractor could see large and consistent benefits.  This means that the benefits of using BIM might not be maximized aside from time and documentation for the head contractor in that situation.  And if it is a case where head contractors see a large amount of the cost savings, they can more readily pass along the cost saving of BIM modeling. But the subcontractors may not be motivated to help improve the BIM modeling because it doesn’t help their bottom line.  For both of these reason, it makes sense why it is most common for head contractors and designers to push for improvements and BIM modeling.  However, an often overlooked requirement is that the subcontractor needs to work with the head contractor in implementing the improvements and have proper motivation to pass along the savings the see the full benefit for everyone involved with the project.

What is your opinion on BIM model implementation in regards to subcontractors and head contractors?  Are there any ways to promote a shared interest in BIM modeling?  Thanks for your time and have a good week!

Post Navigation